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Lung cancer is a major cause of death in the United States and other countries. The risk of lung cancer is greatly
increased by cigarette smoking and by certain occupational exposures, but familial factors also clearly play a major
role. To identify susceptibility genes for familial lung cancer, we conducted a genomewide linkage analysis of 52
extended pedigrees ascertained through probands with lung cancer who had several first-degree relatives with the
same disease. Multipoint linkage analysis, under a simple autosomal dominant model, of all 52 families with three
or more individuals affected by lung, throat, or laryngeal cancer, yielded a maximum heterogeneity LOD score
(HLOD) of 2.79 at 155 cM on chromosome 6q (marker D6S2436). A subset of 38 pedigrees with four or more
affected individuals yielded a multipoint HLOD of 3.47 at 155 cM. Analysis of a further subset of 23 multige-
nerational pedigrees with five or more affected individuals yielded a multipoint HLOD score of 4.26 at the same
position. The 14 families with only three affected relatives yielded negative LOD scores in this region. A predivided
samples test for heterogeneity comparing the LOD scores from the 23 multigenerational families with those from
the remaining families was significant ( ). The 1-HLOD multipoint support interval from the multigener-P p .007
ational families extends from C6S1848 at 146 cM to 164 cM near D6S1035, overlapping a genomic region that
is deleted in sporadic lung cancers as well as numerous other cancer types. Parametric linkage and variance-
components analysis that incorporated effects of age and personal smoking also supported linkage in this region,
but with somewhat diminished support. These results localize a major susceptibility locus influencing lung cancer
risk to 6q23–25.

Introduction

There are more individuals who die from lung cancer
than from breast, colon, and prostate cancer combined,
with an estimated 173,700 new cases and 160,440
deaths expected in the United States in 2004 (Jemal et
al. 2004). The overall 5-year survival rate of lung cancer
is 15% (Jemal et al. 2004). Advances in the detection
and treatment of this disease have only resulted in a
marginal improvement in mortality rates. In the last 50
years, lung cancer incidence increased by 249%, and
mortality increased by 259% (Welch et al. 2000).
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Cancer of the lung has frequently been cited as an
example of a malignancy that is solely determined by
the environment (Doll and Peto 1981; Blot and Frau-
meni 1996). The risks associated with cigarette smoking
(Burch 1980; Doll and Peto 1981; Carbone 1992; Doll
et al. 1994; Blot and Fraumeni 1996) and certain oc-
cupations, such as mining (Seaton 1984), shipbuilding,
and petroleum refining (Blot and Fraumeni 1976; Blot
et al. 1979; Gottlieb and Steadman 1979) are well es-
tablished. There is little doubt that the majority of lung
cancer cases are attributable to cigarette smoking and
other behavioral and environmental risk factors (Beck-
ett 1993). However, numerous studies also suggest the
involvement of genetic risk factors.

Investigators have long hypothesized that individuals
differ in their susceptibility to environmental insults
(Motulsky 1957; Heath 1958; Friberg 1959). More
than 40 years ago, Tokuhata and Lilienfeld (1963) pro-
vided epidemiologic evidence for familial aggregation
of lung cancer after accounting for personal smoking,
which suggested the possible interaction of genes,
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shared environment, and common lifestyle factors in the
etiology of lung cancer. Fraumeni et al. (1975) reported
an increased risk of lung cancer mortality in siblings of
probands with lung cancer, and positive family history
has consistently been found to be a risk factor for lung
cancer in a number of case-control studies (reviewed in
Bailey-Wilson et al. 1998; Sellers and Bailey-Wilson
1998; Etzel et al. 2003).

Genetic modeling studies have also suggested that fa-
milial aggregation of lung cancer may be due to inher-
itance of only a few genetic factors. Segregation analyses
of Louisiana families gave evidence for inheritance of a
rare major autosomal gene that acts in conjunction with
cigarette smoking to produce an earlier age at onset of
the cancer (Sellers et al. 1990, 1991, 1992). Under this
model, heterozygotes with the susceptibility allele and
with average levels of cigarette smoking had relative
risks of 14, 11.8, and 6.2 at age 50 years, 60 years, and
70 years, respectively, compared with noncarriers who
had average levels of smoking. Additional segregation
analyses of these data examining cohort and polygenic
effects continued to indicate the effects of an allele on
inherited susceptibility to lung cancer and also on risk
for a broader group of smoking-related cancers (lung,
oral cavity, esophagus, nasopharynx, larynx, pancreas,
bladder, kidney, and uterine cervix) after smoking was
allowed for (Chen et al. 1991; Bailey-Wilson et al.
1992). Gauderman et al. (1997) applied a Gibbs sam-
pling method to the same lung cancer data set and found
evidence for a dominant major locus with significant
effects of smoking, but no evidence of gene-environment
statistical interaction on the logistic scale.

Similar findings were reported by Yang et al. (1999),
who noted evidence for Mendelian codominant inher-
itance with modifying effects of smoking and chronic
bronchitis, using families of nonsmoking cases diag-
nosed at ages 40–59 years. Daw et al. (in press) per-
formed oligogenic segregation analysis of time to onset
of lung cancer on 12,000 families. The results of their
work indicate the likely segregation of risk-conferring
alleles at three or four genetic loci. The low number of
estimated loci strongly suggests that genetic linkage
studies could identify genetic factors for familial lung
cancer (FLC).

On the basis of the evidence from these studies of the
existence of cancer susceptibility genes that may act in
conjunction with cigarette smoking to increase risk of
lung and other throat cancers, we performed a ge-
nomewide-scan linkage study in families selected for
aggregation of lung cancer. We considered lung, laryn-
geal (ICD-9 161.0–161.9), oropharyngeal (ICD-9
146.3–146.9), or hypopharyngeal (ICD 148.0–148.9)
cancer, henceforth grouped together under the term
“lung and throat (LT) cancer,” to be pleiotropic effects

of the same gene. The high case-fatality rate (15% 5-
year survival) and low resection rate (25%) makes the
study of families with lung cancer particularly chal-
lenging, because it is difficult to collect adequate num-
bers of biospecimens for DNA analysis. A multidisci-
plinary collaborative effort was necessary to identify
and accrue large numbers of families with FLC to test
the hypothesis that there are genetic variants that greatly
increase the risk of developing lung cancer. Recognizing
the complexity of modeling the impact of environmental
factors for this complex disease, we made an a priori
decision that a simple autosomal dominant affected-
only model would constitute our primary analytic strat-
egy. Further analyses in which we also evaluated the
evidence for linkage, allowing for the effects that smok-
ing behavior, age, and sex have on the risk for lung
cancer, were performed and are described.

Material and Methods

Data Collection

Data were collected by the FLC recruitment sites of
the Genetic Epidemiology of Lung Cancer Consortium
(GELCC): the University of Cincinnati, University of
Colorado, Karmanos Cancer Institute, Saccomanno Re-
search Institute, Louisiana State University Health Sci-
ences Center, Mayo Clinic, and Medical College of Ohio.
To date, of the 26,108 lung cancer cases screened at
GELCC sites, 13.7% had at least one first-degree relative
with lung cancer. Following the initial family history
screening process, we collected, from 3,541 probands
and/or their family representatives, data regarding ad-
ditional persons affected with any cancers in the ex-
tended family, vital status of affected individuals, avail-
ability of archival tissue, and willingness of family
members to participate in the study. Full pedigree de-
velopment and biospecimen collection were performed
on 771 families with three or more first-degree relatives
affected with lung cancer. Cancers were verified by med-
ical records, pathology reports, cancer registry records,
or death certificates for 69% of individuals affected with
LT, and by reports of multiple family members for the
other 31% of family members affected with LT. Else-
where, studies have shown that reports from family
members give high accuracy rates for lung cancer di-
agnoses (Sellers et al. 1987; King et al. 2002). Only a
small percentage (∼11%) of these families had sufficient
biospecimens available to be informative for linkage
analysis, and 52 were genotyped. From these 52 families,
we accrued 654 blood samples (595 from family mem-
bers and 59 from spouses), 10 buccal cell samples, and
78 archival blocks containing normal tissue. Archival
blocks of lung, throat, or laryngeal tumors were col-



462 Am. J. Hum. Genet. 75:460–474, 2004

lected from 61 family members, and blocks of other
tumor types were collected from an additional 60 family
members. Two families are African American, and one
family has mixed racial composition (African American,
Creole, and white); the remaining families are white.

Data were sent from each FLC collection site to the
central phenotype-data management center in Cincin-
nati, where they were reviewed, verified, and merged,
prior to being transmitted to M. D. Anderson Cancer
Center for creation of files for linkage analyses. The
Cincinnati site developed a comprehensive database of
the familial pedigrees with lung cancer, including infor-
mation on family history, affection status, tissue acqui-
sition, and clinical and epidemiologic data.

Sample Preparation and Genotyping

Blood, buccal cells, and archival biospecimens were
used as sources of DNA for genotyping family members
of the kindreds with lung cancer. DNA isolated from
blood has been genotyped at the Center for Inherited
Disease Research (CIDR, a National Institutes of
Health–supported core research facility), and DNA from
buccal cells and archival tissue and sputum were ge-
notyped at the University of Cincinnati.

DNA from archival tissue for genotyping was ob-
tained from 10 10-mm paraffin sections containing nor-
mal tissue. The archival tissue blocks were examined at
UT Southwestern Medical Center, and sections of nor-
mal tissue were prepared for genotyping at the University
of Cincinnati. We required the specimen to have at least
50% normal cells for the global genotyping. DNA was
isolated from paraffin sections, and sputum samples
were isolated by a modified Wright and Manos (1990)
procedure, performed by incubating the tissue with 0.5
mg/l of Proteinase K in 1# PCR buffer with NP-40 and
Tween 20 for 1 h at 55�C. This was followed by a 95�C
incubation for 10 min to inactivate the Proteinase K.
Additionally, we included an extraction of the isolated
DNA with 24:1 (v:v) chloroform:isoamyl alcohol.
DNA was isolated from the buccal cells and from whole
blood using the Puregene Kit (Gentra Systems) in ac-
cordance with the manufacturer’s protocols.

The CIDR global genotyping set consisted of 392
markers (15 families) or 388 markers (37 families). PCR
amplifications using the primer set for each of the mark-
ers were performed at CIDR and the University of Cin-
cinnati. The standard protocol for PCR performed at
CIDR can be found on the CIDR Web site. Conditions
for PCR using archived DNA were similar to CIDR’s
protocol, but with a modification of an increase in the
number of cycles to 35. All samples were amplified in
an MJ Research Thermocycler. In brief, the cycles were
as follows: 95� for 12 min, for 1 cycle; 94� for 45 s, 55�
for 1 min, and 72� for 1 min, for 10 cycles; then 89� for

1 min, 55� for 1 min, and 72� for 1 min, for an additional
25 cycles; followed by a final extension at 72� for 10
min. PCR amplifications were performed using a single
fluorescently labeled primer obtained from CIDR. After
the reactions, PCR products were resolved on an ABI
3100 automated DNA sequencer and were analyzed
with genotype software. Because of the reduced amounts
of genomic DNA in the archived samples, none of the
amplification products were pooled prior to loading
onto the 96 wells of a plate for subsequent analysis.

Merging of Genotype Data Generated at CIDR and
the University of Cincinnati for Linkage Analyses

Assignment of alleles generated at CIDR and the Uni-
versity of Cincinnati was accomplished by genotyping
several samples in common for each gel (or plate) at
both facilities. These common samples included CEPH
controls 1331-01 and 1331-02 as well as several lym-
phocyte DNA samples from members of the families
with FLC.

Our first step in evaluating the genetic data was to
appropriately bin the allele lengths. To allow us to jointly
analyze data across different platforms used at CIDR
versus those used at the University of Cincinnati, we first
compared the raw allele lengths for 16 subjects who had
been genotyped on both platforms. We next generated
a linear regression to predict CIDR lengths from the
University of Cincinnati data and identified any errors
in the data as alleles that failed to satisfy the criterion:

,ˆdistance p abs (cosine [arctangent (b)] # [y � y]) ! 1
where is the predicted value of a point. The predictionŷ
of allele lengths from both centers routinely yielded an
R2 value 199% for all but two markers (which had R2

values of 97% and 98%). However, the intercepts are
routinely different from 0, indicating a shift in allele
lengths between labs, and the slope often varied from
1, indicating that without regression adjustment, alleles
at the extremes could have been misclassified.

Error Detection

The programs Relative (S.A.G.E. 2002) and PREST
(McPeek and Sun 2000) were used to verify relationships
among individuals in the data. GAS (GAS 1998), SIB-
PAIR (Duffy 2002), and PedCheck (O’Connell and
Weeks 1998) were used to check for Mendelian incon-
sistencies. All such errors were corrected by eliminating
the genotypes indicated to have been most likely to cause
errors.

Linkage Analysis

Families were selected for the study only if they had
multiple individuals (at least three) affected with lung
cancer. However, for the purpose of the linkage analyses,
persons were considered to be affected if they had an
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LT cancer (resulting in a total of 241 affected persons
in these 52 linkage families). Persons affected with other
cancers were considered unaffected in these analyses.
Marker allele frequencies were calculated separately and
linkage analyses were performed separately for the white
American and African American families, with the re-
sults combined in overall tests of linkage.

Two-point parametric and multipoint parametric link-
age tests were performed with the FASTLINK (Cot-
tingham et al. 1993) and SIMWALK2 programs (Sobel
and Lange 1996; Sobel et al. 2001), with the use of an
autosomal dominant low-penetrance model under the
assumption of a susceptibility allele frequency of 0.01,
10% penetrance in gene carriers, and 1% penetrance in
non–gene carriers. Because this model assumes a very
low penetrance for unaffected individuals, they can have
any of the genotypes with the probabilities not influ-
enced by their phenotype, so that this model is virtually
identical to an affected-only parametric analysis (Ter-
williger and Ott 1994). The nonzero sporadic rate fur-
ther allows for individuals who have lung cancer due
solely to environmental exposures (i.e., cigarette smok-
ing). Several studies have shown that approximately cor-
rect models recover most of the available power in a
parametric linkage analysis (Hodge et al. 1997; Green-
berg et al. 1998; Abreu et al. 1999; Durner et al. 1999;
Greenberg and Abreu 2001; Abreu et al. 2002). Since
∼90% of the affected individuals in these pedigrees
smoked cigarettes, a weighting of only the affected in-
dividuals in this analysis has the effect of allowing for
smoking status and ignoring information from unaf-
fected subjects. LOD scores under the assumption of
heterogeneity (HLODs) were computed for both two-
point and multipoint analyses (Ott 1999).

We also performed several other types of analyses that
incorporated the effects of smoking, age, and sex into
our linkage study. Two-point parametric linkage analysis
was performed using LODLINK, from the Statistical
Analysis for Genetic Epidemiology (S.A.G.E.) package.
When using LODLINK, we assumed the best-fitting
model from segregation analysis (Sellers et al. 1990), an
autosomal codominant locus with susceptibility allele
frequency of 0.052, and penetrance functions that in-
cluded age and cigarette smoking as covariates in the
model. Since the codominant susceptibility allele in this
model is uncommon, predicted segregation of disease in
families would appear similar to dominant inheritance.

The current implementation of LODLINK only allows
two-point linkage analysis, yet it is well known that
multipoint linkage analysis can be more powerful than
two-point linkage, especially in situations where matings
are not fully informative (as in these families with large
numbers of unsampled deceased parents). The complex
“gene-environment” model used in LODLINK has not
yet been implemented in any multipoint linkage analysis

program. Therefore, to incorporate effects from smoking
in multipoint analysis, we also used a method described
elsewhere (Shete et al. 2002) in which a liability class is
defined for each subject. To construct the liability classes,
we used the same logistic model that was derived from
the segregation analysis by Sellers et al. (1990) and that
was used in the LODLINK analyses described above.

Nonparametric analyses also were performed with
variance-components methods. Two approaches were
used—one that incorporated age at onset and the other
that used binary outcomes. Since LT cancer has a var-
iable age-at-onset component, we can incorporate age
and other measured environmental risk factors by using
time-to-event data within a linkage analysis framework.
The rationale behind this approach is based on the as-
sumption that if there is significant age-at-onset varia-
bility, then the use of survival analysis techniques will
provide additional information in linkage studies. We
used mixed-effects Cox models (Amos et al. 2001; Ther-
neau 2003; Pankratz et al., in press). This method made
it possible to simultaneously estimate fixed and random
effects (of smoking and sex) on censored survival data
without specifying the censored trait distribution. It also
allowed us to retain the full flexibility of Cox regression
while exploiting the broad capabilities of variance-com-
ponents models. For individuals who developed the dis-
ease, the age at onset represented the observed time data.
For those who were free of disease at the examination
or interview, their age at the time of the exam or inter-
view was used as their observed data. These individuals
represented censored observations. To determine the sig-
nificance of the associations between age at onset and
the measured environmental risk factors and additional
genetic factors, proportional hazards regression analyses
were performed with the S-Plus coxme function that
incorporates the multipoint identity by descent (IBD)
calculated by SIMWALK2 (Sobel and Lange 1996; Sobel
et al. 2001).

The second nonparametric approach used the vari-
ance-components approach (binary option), as imple-
mented in the SOLAR linkage package (Amos 1994;
Almasy and Blangero 1998; Williams et al. 1999), to
scan the genome for regions linked to the binary trait
(affected and unaffected), with multipoint IBD calcu-
lated by SIMWALK2 (Sobel and Lange 1996; Sobel et
al. 2001).

We also have performed subset analyses on the fam-
ilies with the most affected persons and with affected
persons in two or more generations. Of the 52 families,
38 met our initial inclusion criterion of having four or
more affected persons. A smaller subset of 23 families
had five or more affected relatives in two or more gen-
erations. This latter group may be most likely to reflect
genetic susceptibility due to inheritance of an autosomal
dominant factor.
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Table 1

Characteristics of the 52 Familial Pedigrees with Lung Cancer

NO. OF AFFECTED

INDIVIDUALS

PER PEDIGREE NO. OF PEDIGREES

NO. OF AFFECTED INDIVIDUALSa

NO. OF UNAFFECTED INDIVIDUALS

DIRECTLY GENOTYPEDTotal
Directly

Genotyped
With Inferrable

Genotypes

3 14 42 23 8 105
4 12 48 18 8 100
5 13 65 27 8 181
6 7 42 12 10 106
7 4 28 10 5 68
8 2 16 7 0 11

Total 52 241 97 39 571

a Affected individuals had lung, laryngeal, oropharyngeal, or hypopharyngeal cancer.

Results
Table 1 summarizes characteristics of the 52 ped-

igrees. There were 223 persons affected with lung can-
cer; 13 persons affected with laryngeal (ICD-9 161.0–
161.9), oropharyngeal (ICD-9 146.3–146.9), or hypo-
pharyngeal (ICD 148.0–148.9) cancer; and 5 persons
affected with both primary lung cancer and one of the
other three primary cancers. The median number of af-
fected persons per family was four. There were 36 fam-
ilies with affected persons in two or more generations.
Six pedigrees contained affected family members in three
generations, and one other pedigree contained affected
individuals in four generations. Many families also con-
tained affected persons with onset of lung cancer at an
early age. The median age at onset for lung, laryngeal,
and pharyngeal cancer was 60 years, less than the me-
dian value of 70 years for age at diagnosis in the general
white population (Ries et al. 2000). Minimum age at
onset within the family may be a better indicator of
the potential for existence of a susceptibility gene, since
it is not influenced by older sporadic cases. In our fam-
ilies, the minimum age at onset within the family ranged
from 29 years to 68 years with a median value of 50.5
years.

For the 241 affected individuals in the 52 families
with FLC (table 1), 86 blood samples were available
for global genotyping. Of 149 individuals in the 52
families who were deceased at the time of pedigree de-
velopment, we were able to globally genotype 50 (34%).
DNA from archival tissue specimens was used to glob-
ally genotype 11 affected family members. We recon-
structed the genotypes of 39 persons, using genotypes
of spouses and offspring, including genotypes from ar-
chival tissue of five spouses. Genotyping was also per-
formed for markers on chromosomes 6 and 12 for five
deceased affected persons whose archival specimens
yielded limited DNA. Without the ability to globally
genotype archival specimens, we would not have ge-
notypes from 15% of the affected family members
needed for linkage analysis.

Figure 1 shows the maximum (recombination frac-
tions of �40%) two-point homogeneity LOD scores
across the genome, under the simple dominant low-pen-
etrance model without inclusion of age and smoking
exposure. Positive HLOD scores that approached or
exceeded 1.0 were calculated for markers on chromo-
somes 1, 4, 6, 9, 12, 20, and 21. Two-point analysis
gave an HLOD of 0.94 at D6S2436 in all families and
an HLOD of 1.5 in the 38 families with four affected
relatives, whereas for the 23 highest risk families, the
two-point HLOD score was 2.1. Figure 2 shows that
inclusion of age and smoking in the LODLINK models
gives maximum two-point HLOD scores of 1.48 on
chromosome 6 at C6S1848 in all families, but, for
marker D6S2436, the LODLINK results including
smoking and sex effects yielded lower HLOD scores
than the simple model did. On chromosome 12, LOD-
LINK yielded two-point HLODs of 1.54 at marker
D12S372, 1.1 at D12S375, and 0.4 at D12S2070. The
HLOD scores that were obtained using the model that
incorporated the covariates were higher in some regions
than the maximum two-point HLODs that were ob-
tained under the simple dominant low-penetrance af-
fected-only model with no covariates.

Multipoint parametric linkage under the simple dom-
inant low-penetrance affected-only model yielded a
maximum HLOD of 2.79 at 155 cM (marker D6S2436)
on chromosome 6q in the 52 families (fig. 2), with 67%
of families estimated to be linked. Multipoint analysis
of the 38 families with four affected relatives gives an
HLOD of 3.47 at this same location, with 78% of fam-
ilies estimated to be linked, whereas for the 23 highest
risk families, the multipoint HLOD score is 4.26, with
94% estimated to be linked (fig. 3 and table 2). Con-
versely, linkage analysis of the 14 families with three
affected relatives yielded negative LOD scores. A pre-
divided samples test for heterogeneity (Ott 1999) that
compared the evidence for linkage in multigenerational
families with five affected relatives (23 families) to the
other familes was significant ( ). The 1-HLODP p .007
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Figure 1 Maximum two-point homogeneity LOD scores under the simple dominant low-penetrance model without inclusion of age and
smoking exposure. Individual chromosomes are indicated at the top of the graph.

support interval in the 23 multigenerational families
extends from C6S1848 at 146 cM to 164 cM near
marker D6S1035.

The estimate of the proportion of linked families from
heterogeneity linkage analysis is known to be imprecise
and may be inaccurate in studying complex traits, al-
though the test for linkage in the presence of hetero-
geneity is robust and powerful (see, e.g., Greenberg and
Abreu 2001; Whittemore and Halpern 2001; Hodge et
al. 2002; Vieland and Logue 2002). However, the rel-
ative increase in the estimated proportion of linked fam-
ilies in subsets of families with an increasing number of
affected individuals suggests a decrease in heterogeneity
in the more informative families. In the subset of 23
highly informative families, 14 (61%) have LOD scores
10.0 at D6S2436, 11 (48%) have LOD scores 10.2, and
8 (35%) have LOD scores 10.4. These data demonstrate
that more than half of these 23 pedigrees contribute
toward the positive LOD score on 6q.

Further multipoint analysis that includes smoking be-
havior and that uses a liability class for each subject
yielded somewhat lower HLOD scores. The maximal
HLOD score from analysis of all 52 families was 2.63,
with the HLOD score of 3.04 for the white families.
For the 38 families with �4 cases, the HLOD score was
1.96, and for the 23 multigenerational pedigrees, the
HLOD score was 2.90.

Multipoint linkage analysis under the simple auto-
somal dominant decreased-penetrance model yielded

HLODs close to 1.0 on chromosomes 12, 14, and 20
(table 2). Among the 19 families that showed positive
LOD scores on chromosome 6, we also found positive
multipoint LOD scores on chromosome 12, with a max-
imum HLOD score of 1.6 at D12S2070, and 72% of
families were estimated to show linkage.

Nonparametric multipoint analyses of LT cancer with
the use of the variance-components approach (binary
option) and the mixed-effects Cox models (with mul-
tipoint IBD sharing calculated by SIMWALK2) also
gave support for linkage of LT cancer in the 6q region
at C6S1848 at 146 cM ( and 2.01, re-LOD p 2.46
spectively) in the 23 highest risk families with sex and
smoking status (yes/no) as covariates (fig. 4). On chro-
mosome 12, these nonparametric methods also gave ev-
idence of linkage for LT cancer ( [coxme]LOD p 0.36
and 0.63 [binary]) in the 23 highest risk families with
sex and smoking status (yes/no) as covariates.

The results of our multipoint analyses indicated much
stronger evidence for linkage from multipoint analysis,
compared with the two-point analysis. To evaluate the
impact that sparseness in availability of subjects in the
extended pedigrees has on LOD score calculations, we
used a simulation approach implemented with SLINK
(Ott 1989; Weeks et al. 1990). We simulated data for
the 23 multigenerational families, assuming penetrance
of 40% in carriers and 4% in noncarriers, and then
analyzed the data, assuming penetrance of 10% in car-
riers and 1% in noncarriers. We then performed linkage
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Figure 2 Two-point maximum HLOD scores on chromosome 6, under the Sellers et al. (1990) model (Env) that includes age and cigarette-
smoking exposure and is used in LODLINK, compared with two-point HLOD scores under the simple dominant low-penetrance model without
inclusion of age and smoking exposures (No Env). Inclusion of age and smoking exposure increases the evidence in favor of linkage on 6q.

analysis of the disease susceptibility and 1 or 2 markers
(the order was D6S2436–0.02 cM–disease–10 cM–
D6S1035, and we used D6S2436 alone for two-point
analyses). We also simulated data under the assumption
that we could only obtain samples from those individ-
uals who actually gave samples (sparse case), versus the
situation in which all individuals give samples (dense
case). In sparse pedigrees, the increase in LOD scores
from two-point to three-point analyses was 34%,
whereas, for dense pedigrees, it was only 19%. We an-
ticipate that simulations using C6S1848 might further
indicate a gain in LOD scores from multipoint analysis,
but four-point analysis using SLINK was prohibitively
time consuming. These studies suggest that, for sparse
pedigrees, multipoint analysis is relatively more infor-
mative than it is for dense pedigrees with no missing
genotypes of affected persons.

To explore the effect that smoking has on risk for
lung cancer among carriers of the susceptibility hap-
lotype, we first obtained from SIMWALK2 the most
likely haplotypes from 21 of the 23 multigenerational
pedigrees (in 2 pedigrees, we were unable to clearly
identify a susceptibility haplotype). Then, we scored all
individuals as either carriers ( , of which 87n p 223
were affected, and 90.4% of the affected individuals
smoked) or noncarriers ( , of which 19 weren p 344
affected, and 83% of affected individuals smoked). We
then performed a Cox proportional hazards survival

analysis using SAS 8.0 to assess the effects of smoking
and sex separately among carriers and noncarriers of
the susceptibility haplotype, treating time to onset of
LT cancer as an endpoint and sex and cigarette pack-
years as predictors. The results of this analysis showed
a mild effect of increasing smoking on risk for lung
cancer among carriers (hazards ratio [HR] per pack-
year p 1.004, ), whereas, among noncarriers,P p .13
there was a significant effect of smoking on risk for lung
cancer (HR per pack-year p 1.018, ). WhenP p .0023
smoking was treated as a categorical yes/no variable,
we found that smoking increased risk for both carriers
(HR p 3.31, ) and noncarriers (HR p 2.95,P p .002

). These sets of observations suggest that smok-P p .10
ing at any level increases risk in carriers of inherited
susceptibility from a locus on chromosome 6q, whereas
increasing smoking increases risk for noncarriers.

Discussion

These results provide clear evidence for a major suscep-
tibility locus on chromosome 6q influencing LT cancer
risk—particularly in the multigenerational densely af-
fected families—with characteristics consistent with an
autosomal dominant or codominant major locus. As ex-
pected, the multipoint analyses that test for linkage in
the presence of heterogeneity (multipoint HLODs) gave
the most power in our analyses. In addition to the com-
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Figure 3 Plot of chromosome 6 parametric multipoint HLOD scores (affected-only dominant model, no environmental covariates) cal-
culated by SIMWALK2, in all 52 families (HLOD-All), in the 38 families with four or more affected individuals (HLOD-38), and in the 23
multigenerational families with five or more affected individuals (HLOD-23).

pelling evidence for linkage to chromosome 6q, we also
found suggestive evidence for linkages to some other
regions (Lander and Kruglyak 1995). There is also some
indication of a possible epistatic interaction between the
putative loci on chromosomes 6 and 12, but more data
are required to confirm this interaction.

The 1-HLOD support interval on 6q obtained from
the multipoint analysis of the multigenerational families
extends from C6S1848 at 146 cM (147.95 Mb) to 164
cM (159.94 Mb) near D6S1035. We have also provided
the location of the markers on 6q in million base pairs
(Mb), since the chromosomal regions of allelic loss are
reported in the literature in Mb (see fig. 5 legend). The
interval supporting linkage overlaps a genomic region
on 6q that exhibits allelic loss in non–small-cell lung
carcinoma (Petersen et al. 1997; Virmani et al. 1998;
Luk et al. 2001; Goeze et al. 2002). These studies used
cytogenetic techniques of comparative genomic hybrid-
ization (CGH) and/or fluorescent in situ hybridization
to detect large regions of chromosomal imbalance on
6q. Berrieman et al. (2004) detected allelic loss between
6q25-qter for 50% of the samples examined, and Goeze
et al. (2002) detected deletion between 6q14–24 in at
least 60% of the 59 primary lung tumors examined.
The study by Petersen et al. (1997) examined 50 non–
small-cell lung carcinomas by CGH, and 46% exhibited

chromosomal imbalance in the interval supporting link-
age to 6q. Luk et al. (2001) examined 23 lung tumors
and detected 6q loss in 30% of the tumors. There are
no published studies that examined lung tumors to de-
fine a minimum region of deletion on 6q by loss-of-
heterozygosity (LOH) analysis. However, two studies
did detect LOH with several markers on 6q (located
between 152 Mb and 167 Mb) in 50% of the lung
tumor/lung cancer cell lines examined (Merlo et al.
1994; Virmani et al. 1998). These analyses of sporadic
non–small-cell lung carcinomas clearly demonstrate fre-
quent allelic loss on regions of 6q that overlap our link-
age interval.

Numerous other tumor types also have allelic loss on
regions of 6q which overlap the interval supporting link-
age, including breast tumor (Noviello et al. 1996; Utada
et al. 2000; Cesari et al. 2003; Zeller et al. 2003), ovar-
ian tumor (Hansen et al. 2002; Cesari et al. 2003),
mesothelioma (Jensen et al. 2003), pancreatic tumor
(Abe et al. 1999; Barghorn et al. 2001), squamous cell
carcinoma (SCC) of the oral cavity (Tong et al. 2004),
melanoma (Millikin et al. 1991), and Hodgkin lym-
phoma (Re et al. 2003). These studies utilized LOH
analyses to determine regions of minimum chromoso-
mal deletion. Figure 5 illustrates the overlap of these
minimum regions of deletion within our interval sup-
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Table 2

Multipoint HLOD Scores for Susceptibility to LT Cancer

CHROMOSOME LOCUS POSITION

MULTIPOINT HLODa IN

All 52 Families 38 Familiesb 23 Familiesc

6q D6S2436 155 2.79 3.47 4.26
12q D12S2070 125 .60 .89 .63
20 Near D20S470 37 .98 1.20 1.18
14 D14S306 44 1.06 1.09 .84

a Simple dominant model using SIMWALK2.
b Families with four or more affected individuals.
c Multigenerational families with five or more affected individuals.

porting linkage on 6q. The horizontal lines denote
regions of deletion, and the numbers above each line
denote the reference from which the data were obtained
(see fig. 5 legend). Since some studies identified two or
more distinct minimum regions of deletion, a number
may appear above more than one horizontal line. The
majority of the detected regions of allelic loss on 6q are
located in our linkage region (fig. 5), although deletions
are observed in two other locations. For example, allelic
loss has been detected in prostate tumors, non-Hodgkin
lymphomas, and acute lymphoblastic leukemias in a
region proximal (90–105 Mb) to our linkage region
(Merup et al. 1998; Srikantan et al. 1999; Zhang et al.
2000; Hyytinen et al. 2002; Verhagen et al. 2002; Kon-
ishi et al. 2003). Tumor-suppressor genes may also re-
side on 6q in a region telomeric to our linkage region
(Tibiletti et al. 2000).

There is considerable overlap between these regions
of minimum deletion shown in figure 5, including the
following: (1) overlap of regions denoted by horizontal
lines 1, 2, 4, 6, and 8, with the minimum region of
overlap around markers D6S305 and D6S1599; (2)
overlap of lines 12, 11, 5, 3, and 1, with the minimum
region of overlap between D6S978 and D6S1637; (3)
overlap of lines 11, 9, 7, 3, and 1, with the minimum
region of overlap between D6S1648 and D6S1055; and
(4) overlap of lines 11, 10, 8, 7, and 1, with the min-
imum region of overlap between D6S270 and D6S308.
Also, some of the overlap occurs between minimum
regions of deletion detected in different tumor types
(e.g., horizontal lines 1 and 3 depict regions of deletion
detected from breast tumors, line 5 from ovarian tu-
mors, line 11 from melanomas, and line 12 from Hodg-
kin lymphomas). These data are consistent with the ex-
istence of one or more tumor-suppressor genes in the
linkage region that we have identified for LT cancer in
this study. There are several interesting candidate genes
in this region, including four putative tumor-suppressor
genes: SASH1 (148.8 Mb), LATS1 (150 Mb), IGF2R
(160.45 Mb), and PARK2 (161.7 Mb). Also, other
genes in this region are involved in some aspects of the
regulation of cellular proliferation or the prevention of

DNA damage. The sequencing of exons in these can-
didate genes is underway in families that show evidence
of linkage of lung, laryngeal, oropharyngeal, or hypo-
pharyngeal cancer to 6q markers.

We have detected compelling evidence of linkage on
6q using a simple dominant low-penetrance affected-
only model. This linkage model was chosen as our pri-
mary analytical approach because of uncertainty about
the strength of the relationship between smoking be-
havior and lung cancer risk in the high-risk families we
are studying. As indicated in our prior studies of Li-
Fraumeni syndrome (Hwang et al. 2003), smoking
could have a much less important role in the context
of genetic susceptibility than in the general population,
and parametric models that rely heavily on smoking
behavior might lead to a deflation of LOD scores for
detection of linkage. Furthermore, possible deflation of
LOD scores could occur if there is a common genetic
susceptibility between smoking behavior and LT can-
cers. In addition, since ∼90% of the affected family
members in our studies smoked, a weighting of only
the affected individuals in this low-penetrance model
has the effect of allowing for smoking status while ig-
noring information from unaffected subjects. The non-
zero sporatic rate (1%) allows for individuals who are
not gene carriers to be affected as a result solely of their
smoking exposure, and the relatively low penetrance
(10%) for gene carriers allows nonsmoking unaffected
persons to have a high probability of being a gene car-
rier. Finally, simple models such as this one are known
to recover a large portion of the linkage information
available for many types of complex traits, as long as
the mode of inheritance (dominance) at the trait locus
is correctly specified (Hodge et al. 1997; Greenberg et
al. 1998; Abreu et al. 1999, 2002; Durner et al. 1999;
Greenberg and Abreu 2001).

The detection of significant linkage on 6q by the sim-
ple model, without explicitly including smoking history
as a covariate in the model, does not imply that smoking
exposure is an unimportant risk factor for lung cancer
in family members who are carriers of the genetic risk
factor but, rather, it implies that the genetic factor on
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Figure 4 Plot of chromosome 6 nonparametric multipoint linkage analysis using the variance-components approach (binary option) and
the mixed-effects Cox models with multipoint IBD sharing calculated by SIMWALK2, for the 23 multigenerational families with five or more
affected individuals.

6q is strong enough to be detected by the low-pene-
trance affected-only linkage model with our pedigrees.
Smoking exposure is also an important risk factor, since
90% of the affected individuals in the 52 pedigrees were
smokers, and 89% of individuals in the 23 multige-
nerational families with 5 or more affected members
smoked. The Cox modeling that we performed sug-
gested that the inferred carriers of a 6q mutation may
be sensitive to any level of smoking, rather than sug-
gesting an increasing gradient of risk with increasing
smoking behavior, as is usually observed in the general
population. In the segregation analysis approach used
by Sellers et al. (1990), the difference in the effect of
smoking behavior on risk could not be effectively mod-
eled because of the difficulties in fitting a covariate by
unmeasured genotype interactions.

Because it is possible that better modeling of the joint
effect of genetic factors and smoking exposure might
improve power to detect linkage, we also included
smoking behavior in two-point and multipoint para-
metric analyses and in multipoint nonparametric link-
age analyses. Our two-point parametric analyses with
the use of LODLINK gave stronger evidence of linkage
to some parts of the 6q region than did the simple model
in two-point analyses (fig. 2). However, the results from
the multipoint analysis showed decreased (but still

strong) evidence for linkage when smoking behavior
was included in the analysis. It is possible that the model
previously derived from segregation analysis of a pop-
ulation-based case series of lung cancer is not appro-
priate for the highly selected families we are studying
in this linkage study, as discussed above. If the Sellers
et al. (1990) model inaccurately models the differential
effect of smoking behavior on carriers and noncarriers,
then the use of it could yield lower evidence for linkage,
particularly in the multipoint analysis, which is known
to be more sensitive to model misspecification than the
two-point linkage analysis (Risch and Giuffra 1992).
Work by both Dizier et al. (1993) and Durner et al.
(1999) has shown that the use of models that are the
result of population-based segregation analysis in the
linkage analysis of a very complex trait can reduce or
conceal evidence of linkage.

Nonparametric multipoint analysis incorporating age
and smoking status as covariates and using the variance-
components and mixed-effects Cox models also support
the same genomic region found by the parametric mod-
els. An advantage of the nonparametric linkage analysis
is nonspecification of a model. Thus, when similar ev-
idence for linkage is obtained with nonparametric anal-
ysis, then the evidence of linkage from the parametric
model is substantiated. It is also known that multipoint
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Figure 5 Minimum regions of chromosomal deletions of various tumor types, located within the 6q linkage region. The HLOD-score
plot for the 23 families (fig. 3) is reproduced with the scale of the X-axis in physical distances (Mb) instead of cM. Horizontal lines denote
regions of minimum chromosomal deletions for various tumor types. The number above each line denotes the reference in which the information
about chromosomal deletions was obtained (see list of references below). Some of the studies detected two or more distinct regions of deletion
and, thus, the same reference number may appear above more than one horizontal line. The numbers 1–4 on deletion lines represent minimal
regions of deletion for breast cancer; 5 and 6, for ovarian cancer; 7, for mesothelioma; 8 and 9, for pancreatic cancer; 10, for SCC of oral
cavity; 11, for melanoma; and 12, for Hodgkin lymphoma. Markers are indicated by the symbol “�” and are placed from left to right: D6S474
(112.92 Mb), D6S1040 (130.97 Mb), D6S1009 (137.28 Mb), C6S1848 (147.95 Mb), D6S2436 (154.70 Mb), D6S1035 (159.94 Mb), D6S1277
(164.21 Mb), and D6S1027 (168.98 Mb). The references for each horizontal line are: (1) Noviello et al. 1996; (2) Utada et al. 2000; (3) Zeller
et al. 2003; (4) Cesari et al. 2003; (5) Hansen et al. 2002; (6) Cesari et al. 2003; (7) Jensen et al. 2003; (8) Abe et al. 1999; (9) Barghorn et
al. 2001; (10) Tong et al. 2004; (11) Millikin et al. 1991; and (12) Re et al. 2003.

parametric analysis can be more powerful than the non-
parametric approach, especially under dominant inher-
itance (Durner et al. 1999; Greenberg and Abreu 2001).
In future studies, and particularly once the gene pre-
disposing to lung cancer in these families is identified,
an evaluation of the effect that smoking has on lung
cancer risk will be of great value in understanding car-
cinogenesis for carriers.

In the study of complex traits such as LT cancer, ge-
netic heterogeneity is expected and has been observed
for other cancers with hereditary components, such as
breast cancer, colorectal cancer, malignant melanoma,
and prostate cancer. Our results are consistent with this
expectation. In other complex diseases, subdivision by
clinical characteristics, such as age at onset and pattern
of inheritance in the pedigrees, has often resulted in
reduction of heterogeneity. As we subdivided our ped-
igrees into those that were more consistent with a strong

genetic susceptibility (38 families with four or more af-
fected relatives) and further subdivided them into those
that were most consistent with an autosomal dominant
susceptibility locus (23 families with five or more af-
fected individuals in two or more generations), the ev-
idence for linkage at 6q increased substantially, and the
estimate of the proportion of linked families increased,
approaching 1.0 for the subset of 23 multigenerational
pedigrees. In fact, in this subset, the homogeneity LOD
score and the HLOD were virtually identical, suggesting
that these clinical familial characteristics had substan-
tially reduced the heterogeneity.

Elsewhere, Hodge et al. (1997), Greenberg and Abreu
(2001), and Abreu et al. (2002) have shown that there
is some inflation of the type I error rate (false-positive
rate) when one uses multiple penetrance models and
when one computes HLOD scores as opposed to LOD
scores. These authors have shown that the critical LOD
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threshold of 3.0 should be increased by 0.3 for maxi-
mizing over penetrance only (Hodge et al. 1997), by
0.47 when two-point HLODs are used (Abreu et al.
2002), and by 0.7 when multipoint HLODs are used
(Greenberg and Abreu 2001). Thus, these authors sug-
gest that adding 1 LOD unit to the significance thresh-
old of (corresponding to a P value ofLOD p 3.0
.0001), which results in a corresponding critical thresh-
old of , is a somewhat conservative ad-HLOD p 4.0
justment for an analysis in which multipoint HLODs
are calculated and multiple penetrance models are used.
Our observed multipoint HLOD of 4.26 in the multi-
generational families would satisfy these criterion.

We intend to follow up the results of this study by
fine mapping the most significant regions. We also will
attempt to replicate these linkage findings in an inde-
pendent set of families with FLC. As a result of limited
biospecimen availability, effective performance of a
linkage study for a rapidly fatal disease such as lung
cancer is difficult. However, the ability to globally ge-
notype archival specimens greatly improved the power
of our linkage study. In other cancers, discovery of sus-
ceptibility genes has led to greater understanding of the
biological processes that cause these diseases and ulti-
mately will lead to better methods for prevention and
treatment. Likewise, we believe that discovery of lung
cancer susceptibility genes will also be important in im-
proving our understanding of this devastating disease.
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